Pre-Footer
Quick Links
STIPS
Introduction to STIPS for WFIRST
The STIPS (Space Telescope Image Product Simulator) software produces simulated imaging data for complex wide-area astronomical scenes, based on user inputs, instrument models and library catalogs for a range of stellar and/or galactic populations. It was originally developed for the James Webb Space Telescope (JWST) mission, but has been extended to include WFIRST functionality as well. The current WFIRST version produces images covering a single detector in the Wide Field Instrument (WFI) field of view. A future enhancement will be able to generate the full WFI focal plane simultaneously. STIPS includes the most current information about the telescope sensitivity, spectral elements, and detector properties. It uses the PSF model generated by WebbPSF-WFIRST, and it calls the appropriate Pandeia modules to compute instrumental throughput and count rates.
STIPS is available on GitHub as a Python module, and also via a web interface that provides a straightforward way of creating observation simulations. To obtain access to the WFIRST data files or the STScI STIPS-WFIRST webserver, please request access as described in the Using STIPS section below.
Functionality
At the heart of STIPS is a multi-faceted scene generation that allows varying degrees of user control. STIPS can generate a randomized set of stars or idealized galaxies based on very concise user specifications, or it can generate point or extended sources based on a detailed input catalog. In addition, an existing image can be used as background.
Each of the sources populating a STIPS simulated scene can be a point source or an extended source. Point sources are characterized by their position and spectral energy distribution. Extended sources are in addition characterized by major axis, minor axis, orientation, and light profile, assumed to follow a Sérsic parametrization. For either point or extended sources, the spectral energy distribution is converted into a count rate at the detector depending on the filter(s) chosen and the current instrument model; the user can choose to specify directly the count rate in each filter instead.
Randomized Source Catalog
For a quick implementation that will satisfy many user needs, the distribution of point or extended sources can be specified in terms of a stellar or galaxy population based on a number of global parameters. The parameters for point sources are designed to mimic a stellar population; those for extended sources are more suited to a galaxy population.
While the source distributions are random, they are also repeatable. The user can explicitly set the seed value for the random number generator used to generate the source distributions, in which case two scenes produced with the same input parameters and the same random number seed will be identical.
Stellar Populations
Stellar populations are built on the basis of the Padova isochrones, specifically the version CMD 2.7. The basic parameters required are the number of stars, their metallicity and age range, and the characteristics of the Initial Mass Function (IMF). In addition, the spatial distribution of the stars can be specified via its shape and radius, and a distance range can be specified as well. If desired, the mass distribution can be modified to allow more massive stars to be closer to the center, in order to mimic the effect of mass segregation. Mass segregation is done by sorting the sources by their distance from the center, and then placing high-mass stars (stars with masses greater than 75% of the maximum mass) at shorter distances with a slightly higher probability than would be produced by random distribution. Multiple populations can be included. The module will generate a catalog of stars, which can be retrieved as part of the simulation products. Stellar spectral energy distributions are then generated using the PHOENIX models, available here.
Galaxy Populations
Galaxy populations are built on the basis of a user-specified range of sizes, brightnesses, and redshifts. Spectral energy distributions are drawn at random from a predefined set of Bruzual-Charlot models, and are assigned randomly either an exponential or a de Vaucouleurs profile with randomly generated shape and orientation. The spatial distribution can be specified in the same way as for stellar populations. As for stellar populations, the catalog of galaxies can be retrieved together with the simulation results.
User-provided Input Catalogs
If the populations-based description is not sufficient, the user can have full control of the definition of the astronomical scene by providing one or more input catalogs specifying the properties of each individual source, including position, brightness, and, for extended sources, size, elongation, orientation, and light profile (in the form of a Sérsic index). When an input catalog is provided, the apparent brightness of each source needs to be specified in each filter; a future upgrade will allow spectral energy distributions to be specified instead.
The user can specify a background image to be added to the scene. The WCS of the image may be derived from its FITS header, or the image may be treated as centered at the scene center. The image's flux units and pixel scale must be specified, and the image will be remapped to the WFIRST detector pixel scale prior to being added to the scene.
The user specifies the desired exposures by filter and exposure time. Exposures can be oversampled if desired. A background level based on a model of zodiacal light is included. Currently, STIPS uses the JWST Background Tool (JBT) to calculate background flux based on source position, and then combines the resulting flux with the instrumental throughput to generate the background value.
STIPS includes a full description of the instrumental PSF as obtained from WebbPSF-WFIRST.
Images produced by STIPS by default include noise and residual errors estimated on the basis of a simple instrument model. This model includes reasonable estimates of possible post-pipeline residuals from flat fielding, dark-current subtraction, and imperfect cosmic ray correction. Error terms are calculated as follows:
- Poisson Noise: For each pixel, create a random number following a Gaussian distribution with mean 0 and standard deviation 1, then multiply by the square root of the absolute value of the flux in that pixel.
- Read noise: STIPS currently calculates readnoise by dividing the exposure into groups of no more than one thousand seconds, and generating the per-pixel read noise as SQRT(number_of_groups) * k * time_per_group**a with k and a being per-instrument constants. This value is then multiplied by a set of random values the same size as the detector. STIPS currently does not implement correlated read noise.
- Flat field: For each instrument, a fixed-pattern flatfield residual file (with a mean of 0) was created, and this file is multiplied by the data.
- Dark: As with flat field, but using a separate file, multiplying the residual file by the exposure time, and adding the resulting dark residual to the image rather than multiplying it.
- Cosmic Rays: The probability of a cosmic ray hit (per pixel) is calculated based on pixel size and exposure time. For each hit, a cosmic ray size and energy are calculated based on the distribution of cosmic rays, and the cosmic ray is added to the appropriate pixel(s). The pipeline process is assumed to remove 99% of the impact of cosmic rays.
- Source catalogs for each included population
- Image data in FITS format
- Quick-look images in JPEG format
- PSF images
- As-observed catalogs for each observation of the included populations.
STIPS produces quick-look JPEG images, FITS images of each individual detector and offset, mosaic images combining detectors into instruments, and combining detector dither patterns. In addition, it provides copies of generated catalogs, both as-created and as-observed. The as-observed catalogs are generated during the observation, and provide the detector coordinates and count rates of every source appearing in the exposure. Because they are generated before PSF convolution and before residual noise is introduced, the as-observed catalog can be used to test the efficiency and accuracy of a source-detection program (e.g., DAOPHOT) on the output data.
STIPS mosaics are generated by the Montage program, and are built without any coordinate distortion. They are not intended as accurate representations of drizzled images, but as a quick-look to see a rough result of (e.g., a combined dither pattern).
Using STIPS
The STIPS central module and web server interface is available on GitHub. STIPS can be run by users locally, through use of GitHub or via STScI's simulation website. Since STIPS is presently in beta release, access to the STScI web interface is restricted to people connected to the WFIRST Project and Science Teams. Access is offered upon request.
Users are authenticated using their Mikulski Archive for Space Telescope (MAST) account. If you do not yet have such an account, please register. Then go to the STScI HST Help Desk and send a message with your name, institutional affiliation, the MAST account name, and a description of your connection to the WFIRST Project or Science Teams. Put “Request for STIPS access” in the subject line to ensure your request is routed to the appropriate person. You will receive instructions from the Help Desk. Once your account is authorized, you may visit the STIPS simulation website to run STIPS simulations.
A detailed description of the format of input source catalogs is available. Much of the remaining STIPS documentation has yet to be written. Some documentation can be accessed as follows:
STIPS is still in development. The present implementation is available to the community as a beta version.
The WFIRST mission is not yet in development, and observatory designs continue to evolve. Hence, STIPS-WFIRST simulations may not accurately reflect the actual future observatory.
STIPS makes several assumptions:
- The current implementation of STIPS uses the Cycle 6 WFIRST design revision, which incorporates information from the GSFC Instrument Reference Information files.
- STIPS relies in part on calculations with WebbPSF-WFIRSTand Pandeia. Therefore, the same assumptions and caveats apply as listed for those tools.
- Field-dependence of the PSF is not currently included in STIPS.
- The Spectral Energy Distribution (SED) for stars and galaxies are obtained from the PHOENIX models and a subset of Bruzual-Charlot models, as described above, and are subject to the same limitations as those models. SEDs for galaxies are assumed constant over their images.
- Models for possible post-pipeline residuals from flat fielding, dark-current subtraction, and imperfect cosmic ray correction are approximate guesses that are not unreasonable for the HST WFC3/IR instrument, but which may be different for the WFIRST WFI instrument.
- The STIPS background count rate is calculated with the JWST Background Tool (JBT), which determines the observability of a particular source using JWST’s orbital parameters.
Enhancements currently planned in the functionality and fidelity of STIPS include:
- Simultaneous images from all 18 detectors with appropriate geometric distortion;
- Field-dependent PSF;
- A more realistic treatment of readout modes and noise estimates;
- Saturation and sub-pixel effects;
- More customizable user input (e.g., per-source SED specification).
If you have suggestions on additional features, please send us suggestions at help@stsci.edu.
Credits, Acknowledgements, and Feedback
STIPS is developed by Brian York, with guidance and contributions from Klaus Pontoppidan, Jason Kalirai, Pey Lian Lim, and Stefano Casertano. STIPS makes use of open source astronomical software developed by Justin Bird, Ahmed Fasih, and Adam Ginsburg.
Users are encouraged to address questions, suggestions, and bug reports to the STScI HST Help Desk. The message will then be directed to the appropriate members of the STIPS-WFIRST team at STScI. In addition, bug reports may be filed against the STIPS GitHub module.